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Abstract: A new analysis technique for the evaluation of the degree of synchronization between the 
physiological state of a group of people and changes in the Earth’s magnetic field based on their 
cardiac inter-beat intervals was developed and validated. The new analysis method was then used 
to identify clusters of similar synchronization patterns in a group of 20 individuals over a two-week 
period. The algorithm for the identification of slow wave dynamics for every person was 
constructed in order to determine meaningful interrelationships between the participants and the 
local magnetic field data. The results support the hypothesis that the slow wave rhythms in heart 
rate variability can synchronize with changes in local magnetic field data, and that the degree of 
synchronization is affected by the quality of interpersonal relationships. 

Keywords: earth’s magnetic field; geomagnetic field; heart rate variability; psychophysiology; 
nonlinear dynamical systems 

 

1. Introduction 

There are numerous investigations examining correlations between human health and the 
Earth’s magnetic field activity. Many interesting studies have shown strong influences on a number 
of human pathologic and behavioral states.  

It is well established that geomagnetic field line resonances and the cavity between Earth and 
the ionosphere generate a number of resonant frequencies that directly overlap those of the human 
brain, autonomic nervous system, and cardiovascular system. Of all the physiological systems 
studied thus far, the rhythms of the heart and the brain are most strongly associated with changes in 
geomagnetic conditions [1–11]. 

For example, numerous studies have demonstrated significant relationships between magnetic 
storms and decreased heart rate variability (HRV), the measurement of beat-to-beat changes in heart 
rate [12], which is suggestive of a potential mechanism linking geomagnetic activity with increased 
incidents of myocardial infarction and coronary disease [7,13–19]. In a review of the health effects of 
geomagnetic disturbances [20], Palmer et al. suggest these “definite conclusions”: (1) geomagnetic 
disturbances have a greater effect on humans at higher geomagnetic latitudes; (2) unusually high 
values of geomagnetic activity have an effect on cardiovascular system health; (3) unusually low 
values of geomagnetic activity appear to have a negative effect on health; (4) approximately 10% to 
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15% of people in areas studied are negatively affected by disturbed geomagnetic activity; and (5) 
HRV is negatively correlated with geomagnetic disturbance. 

There is a wide range of magnetic waves occurring in the magnetosphere that are excited by 
various processes within the magnetosphere as well as the solar wind. The most common source of 
ultra low-frequency wave energy measured on the ground is due to the field line resonances that 
exhibit the largest magnetic wave amplitudes occurring in the magnetosphere [21]. The frequency of 
these oscillations depends on the field strength, the number of charged ions spinning around the field 
lines, and specifically, the length of the magnetic field line. Quasi-sinusoidal oscillations are called 
“Pc” (pulsations continuous), and irregular waveforms are called “Pi” (pulsations irregular). Each 
major type is divided into frequency ranges associated with distinct phenomena. Standing field line 
oscillations are typically in the Pc3 to Pc5 range, which correspond to a frequency range between 1–
100 mHz. Oscillations classified as Pc1 and 2 are oscillations with frequencies up to 5 hertz, which 
are typically excited by geomagnetic substorms [22]. 

The ionosphere is a layer of plasma, a term that describes highly ionized gases threaded by 
magnetic fields, which surrounds the Earth. The charged particles in the plasma can spiral around 
the magnetic field lines and travel along it, creating auroras as high-energy particles flow along the 
field lines to the Earth’s magnetic poles. This process was described by Hannes Alfven to explain 
how low-frequency waves that propagate along magnetic field lines are created [23]. 

Standing waves in the magnetosphere involve many magnetic field lines, with lengths several 
times the Earth’s radius, which are excited and oscillate at their resonant frequency, similar to a 
plucked guitar string. Longer field lines have a lower resonant frequency, while shorter ones resonate 
at a higher frequency. Field lines with more or heavier particles spiraling around them tend to have 
lower frequencies. Changes in solar wind velocity or the polarity and orientation of the interplanetary 
magnetic field can have dramatic effects on the waves, as measured on the surface of the Earth [24]. 

Studies have shown that increased amplitudes of field line resonances can affect the 
cardiovascular system, most likely because their frequencies are in the same range as the primary 
rhythms found in the cardiovascular and autonomic nervous systems [25].  

There has been a rapidly growing use of HRV since new devices have made obtaining the 
electrocardiogram (ECG) and HRV more accessible, and the understanding that HRV reflects 
autonomic nervous system dynamics [12] and provides an index of stress and emotions [26] and 
social interaction [27]. 

In a study conducted by Doronin et al. [28], electroencephalogram (EEG) rhythms, blood 
pressure, heart rate, and reaction times were compared with the low-frequency geomagnetic 
rhythms. They found that the oscillations in both heart and brain patterns changed simultaneously 
with changes in geomagnetic activity. Experiments conducted by Zenchenko et al. [29] monitored 
healthy individuals’ heart rates at rest and compared them with low-frequency variations between 
0.5–3.0 mHz in the geomagnetic field. They found that in two-thirds of the experiments, there was a 
synchronization between the heart rhythms and the rhythms in the geomagnetic field that occurred 
between 4 and 30 minute-long periods. 

A more recent study [30] by McCraty et al. found a surprising degree of synchronization 
between geomagnetic activity and human nervous system function by continuous monitoring of 
participants HRV over a 31-day period in a group of individuals who went about their normal day-
to-day lives. Overall, the study found evidence suggesting that daily autonomic nervous system 
activity not only responds to changes in solar and geomagnetic activity, but also is synchronized with 
the time-varying magnetic fields associated with geomagnetic field line resonances and Schumann 
resonances. More specifically, it was found that the participants exhibited a previously unidentified 
slow wave rhythm in their HRV, which was highly synchronized among the study participants and 
the time-varying magnetic field data, with a rhythm of approximately 2.5 days. 

Following these findings of a significant interconnection between changes in local magnetic field 
activity and heart rate variability, this study examined potential relationships between human 
physiology (HRV), the geomagnetic field activity, and the quality of interpersonal relationships. 
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It has been found that individuals have widely varying levels of sensitivity to changes in the 
Earth’s magnetic field, and can respond in opposite ways to fluctuations in the same environmental 
variable [31]. In order to improve the assessment of physiological synchronization and also identify 
different clusters of individuals’ response patterns, we first developed and validated a new analysis 
approach using near-optimal chaotic attractor embedding techniques. This allowed us to identify 
specific patterns of synchronization between heart rate variability and local magnetic field data, and 
assess potential relationships between interpersonal dynamics and physiological synchronization in 
a group of people. 

2. Methods and Procedures 

2.1. Participants 

During the two-week period between 26 February and 12 March 2015, a group of 20 medical 
students attending the Lithuanian University of Health Sciences continuously wore cardiac monitors 
(Bodyguard 2, Firstbeat Technologies Ltd., Jyväskylä, Finland) that gathered inter-beat intervals (IBI) 
from each participant. Consequently, we obtained a total of 20 IBI series, which is the time between 
the consecutive R wave peaks in the electrocardiogram from the 20 participants.  

2.2. Ethics Statement 

The research met all applicable standards for the ethics of experimentation in accordance with 
the Declaration of Helsinki. The permit to perform biomedical investigation was granted by the 
Kaunas Regional Ethics Committee for Biomedical Investigations, No. BE-2-51, 23.12.2015 (copies of 
documents are enclosed as Supplementary Materials). Participants provided written informed 
consent prior to the experiment. 

2.3. Computational Estimation of the Synchronization of a Group’s HRV Time Series with Earth’s Magnetic 
Field Data  

The main objective of this study was to assess the synchronization between the HRV time series 
of each participant and the magnetic field data. This information was then used to construct clusters 
of participants within the group based on the estimated synchronization between their HRV and the 
magnetic field.  

2.3.1. Magnetic Field Data  

The local magnetic field intensity was measured using a local magnetometer located in Lithuania 
(Coordinates: Latitude: 55.634068 Longitude: 23.704563), which is part of the Global Coherence 
Monitoring Network [32]. Two magnetic field detectors (Zonge Engineering ANT-4) were positioned 
in the north–south and east–west axes to detect local time-varying magnetic field strengths 
(sensitivity 1 pT) over a wide frequency range (0.01–300 Hz) while maintaining a flat frequency 
response. The data acquisition infrastructure captures, then stamps, the global positioning system 
time, and transmits the data to the common server. Each magnetometer in the network is 
continuously sampled at a rate of 130 Hz. Used data can be obtained from the HeartMath Institute 
website [33].  

2.4. Computation of the Power of Local Magnetic Field 

Consider magnetic field intensity {ܫ௧}௧ୀ଴ேିଵ , where ݐ  is a discrete time variable. In order to 
transform {ܫ௧}௧ୀ଴ேିଵ to the frequency domain the discrete Fourier transform (DFT) was used: 

݂(߱) = ෍ ௧ܫ ∙ ݁ିଶగ௜௧ఠே ,߱ ∈ ℤேିଵ
௧ୀ଴  (1) 

In order to observe changes in spectral density over time, the analysis interval was broken up 
into smaller sections using the discrete time short-time Fourier transform (STFT) for {ܫ௧}௧ୀ଴ேିଵ :  
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,ߠ)ܨ ߱) = ෍ ௧ܫ ∙ ݐ)ߦ − ,௜௧ఠି݁(ߠ ߱ ∈ ℤஶ
௧ୀିஶ  (2) 

This is essentially a partitioned form of Equation (1) using the windowing function (ݐ)ߦ. A 
windowing function has a value close to 1 in each of a series of sliding segments of ݐ and a value of 0 elsewhere. 

The squared magnitude of the STFT ߠ)ܨ, ߱) results in the spectrogram of ܫ௧, which is utilized 
in the subsequent analysis since the STFT provides better time resolution: ܵ(ߠ, ߱) = ,ߠ)ܨ| ߱)|ଶ (3) ܵ(ߠ, ߱) is typically referenced as power spectral density (PSD). Thus, the value of ܵ(ߠ, ߱) is 
interpreted as the signal power at the time interval Δߠ and at the frequency range Δ߱. 

Consider that it is required to find the local magnetic field power in the frequency range ߱ ∈[߱௠௜௡; ߱௠௔௫]	ݖܪ at time interval ݐ଴ through ݐଵ = ଴ݐ +Δߠ	(ݏ). 
The power of the local magnetic field is computed using Algorithm A: 

(1) Compute the spectrogram ܵ(ߠ, ߱) (as described previously).  
(2) Crop the spectrogram ܵ = min	{ܵ; ܵ௖௥௢௣} in order to eliminate intermittent chaotic outbreaks in 

the measured data due to manmade noise, lightening, etc.  
(3) Apply the Gaussian median filter of dimensions 3 × 3 to ܵ for the reduction of noise. 
(4) Compute the signal power as	ܲ = ∑ ቀ ଵ୼ఏ ∑ ,ݐ)ܵ ߱)௧భ௧ୀ௧బ ቁఠ೘ೌೣఠୀఠ೘೔೙	 . 

Thus, the signal power time series is the sum of the values of the spectrogram corresponding to 
the specified frequency and time intervals. 

2.4.1. Example: Computation of the Local Magnetic Field Power 

An example of the magnetic field intensity series is shown in Figure 1. 

 

Figure 1. An example of the local magnetic field intensity data (measured in Lithuania during the 
time period between 2015/02/26 01:00:01 and 2015/02/26 03:00:01). 

An example of the spectrogram ܵ(ߠ, ߱) of the magnetic field signal depicted in Figure 1 for Δߠ = 4	hours, ߱ ∈ [0; 52]Hz is displayed in Figure 2. 
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Figure 2. An example of the spectrogram for the magnetic field data presented in Figure 1. Frequency 
resolution is ଵସ଴ଽ଺, Δߠ = 4	hours, Δ߱ = 52	Hz, ߱ ∈ [0; 52]Hz. 
In order to calculate local magnetic field power in the frequency range ߱ ∈ [0;  at time ݖܪ	[1

interval ݐ଴ = 2015/02/26	01: 00: 02	  through ݐଵ = 2015/02/26	01: 00: 03 , the corresponding 
spectrogram is calculated as described above. The spectrogram is then cropped to ܵ = min	{ܵ; 0.25}. 
The signal power ܲ = 7.7405	((pT)ଶ/Hz) is then computed from the filtered spectrogram.   

2.5. Algorithm for the Computation of Geometrical Synchronization between Two Time Series 

2.5.1. Computation of the Area of an Attractor in the State Space 

Let a signal ܺ = ( ଵܺ, … , ܺ௡) be a scalar time series of size	݊.  
It is possible to embed the time series into a 2D delay coordinate space: ௜ܺ , ݅ = 1, ݊തതതതത → ( ௜ܺ, ௜ܺାఛ), ݅ = 1, ݊ − ߬തതതതതതതതതത, ߬ ∈ ℕ 
For ߬ = 1 the following trajectory matrix is obtained:  

൦ ଵܺ ܺଶܺଶ ܺଷ⋮ ⋮ܺ௡ିଵ	 ܺ௡൪, 
where every row of the matrix corresponds to the coordinates of an embedded point in the delay 
coordinate space. The time lag ߬ can be different (߬ ∈ ℕ). Thus, at ߬ = ݇, the trajectory matrix reads: 

൦ ଵܺ ܺ௞ܺଶ ܺ௞ାଵ⋮ ⋮ܺ௡ି௞ାଵ	 ܺ௡൪ 
The ordered set of the embedded points is called an attractor, and the 2D plane itself is called 

the state space [34]. Note that the area occupied by the embedded attractor is one of the attributes 
characterizing the dynamics of the time series. However, the area of the attractor depends on the time 
lag ߬ used for the reconstruction of the state space. The maximal area of the embedded attractor (and 
the corresponding optimal time lag) is a feature that can be exploited for the description of the 
underlying model governing the evolution of the time series [35]. 

We employed a straightforward algorithm for the computation of the area of the embedded 
attractor based on the direct assessment of the geometric area occupied by the set of points of the 
trajectory matrix in the state space. The steps of Algorithm B read: 
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(1) Compute the center of the mass of the points comprising the attractor. Move the origin of the 
state space to the center of the mass.  

(2) Divide the state space of the attractor into the slices with equal central angles of a circle centered 
on the origin. The number of slices depends on the number of points in the observation window 
of the time series.  

(3) Set the radius of each slice to the maximal distance between a point belonging to that slice and 
the origin.  

(4) Compute the area of the attractor	ܵఛ as the sum of areas of all slices. 

As noted previously, the area ܵఛ depends on ߬. We consider a finite range of time lag values ߬ = 1,… , ߬௠௔௫; ܵఛ is calculated for each value of ߬. The area of the embedded attractor is maximized 
in respect to ߬ : ߬∗ = arg ቀmaxఛ ܵఛቁ . The optimal time lag ߬∗  can be used as a scalar identifier 
representing the geometrical features of the analyzed data series in the corresponding observation 
window. The computation of the optimal time lag ߬∗ can be considered as the information reduction 
algorithm where a set of numbers in the original time series is mapped into a single scalar.  

2.5.2. Example 1: Identification of the Optimal Time Lag 

We will consider a nonlinear pendulum model with harmonic excitation as a paradigmatic 
chaotic oscillator in this example: ݔᇱᇱ + ᇱݔ + sin(ݔ) = ܾ cos(߱ݐ) (4) 

Equation (4) exhibits a chaotic solution at ܾ = 2.048;߱ = ଶଷ [36]. Figure 3 illustrates 500 data 
points of the chaotic solution ܺ = ( ଵܺ, … , ܺହ଴଴).  

 

Figure 3. Time series ܺ = ( ଵܺ, … , ܺ௡) representing a numerical solution to Equation (4) with initial 
conditions (0)ݔ = ᇱ(0)ݔ	;0 = 0.8.  

The images of embedded attractors for the time series depicted in Figure 3 using several different 
values of the time lag ߬ are presented in Figure 4. 
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Figure 4. Examples of attractors for different time lag values. In (a) ߬ = 4; (b) ߬ = 12; (c) ߬ = 23; (d) ߬ = 31; (e) ߬ = 43; (f) ߬ = 50.  

According to the algorithm presented above, the first step is shifting the origin to the center of 
the mass of the embedded attractor. The results of this procedure are illustrated in Figure 5. Note that 
this transformation does not impact the geometrical shape of the attractor. 

 
Figure 5. Shifting the origin to the center of mass of the attractor for ߬ = 4: (a) the original attractor; 
(b) the origin shifted to the center of the mass of the attractor. 

We select the number of slices to be 45. The execution of steps 2 and 3 of the algorithm with the 
six attractors (which correspond to six distinct time lag values) shown in Figure 4 results in the 
corresponding sliced diagrams illustrated in Figure 6.  
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Figure 6. Sliced diagrams of the attractors shown in Figure 4. 

The maximal value of ߬ is set to 50, because the total number of data points in the observation 
window is 500 (higher values of ߬ would generate too short trajectory matrices). In order to compute ߬∗ in the range [1,50], the areas of embedded attractors must be computed for each value of ߬. A plot 
representing the relationship between an area of the attractor ܵఛ and ߬	is presented in Figure 7. The 
largest area of the embedded attractor ܵఛ = 24.9527 is achieved at ߬∗ = 23. 

 
Figure 7. The identification of optimal time lag value ߬∗. 

2.5.3. Construction of the Algorithm for the Estimation of the Geometrical Synchronization between 
Two Time Series 

Let ܺ = ( ଵܺ, … , ܺ௡)  and 	ܻ = ( ଵܻ, … , ௡ܻ) be synchronously sampled time series of size	݊. The 
following procedure for the estimation of the geometrical synchronization between those two time 
series. The steps of Algorithm C read: 
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(1) Divide signals ܺ and ܻ into ܶ observation windows of size ݉ (݉ should be large enough to 
enable the reconstruction of a meaningful attractor in the state space): ( ଵܺ, … , ܺ௠), (ܺ௠ାଵ,… , ܺଶ௠),… , (ܺ௡ି௠ାଵ, ܺ௡); ( ଵܻ, … , ௠ܻ), ( ௠ܻାଵ, … , ଶܻ௠), … , ( ௡ܻି௠ାଵ, ௡ܻ). 

(2) Compute optimal time lags for each observation window for both time series using Algorithm 
B. Such computations result in two vectors of optimal time lags: ߬∗௝(௑), ߬∗௝(௒)	(݆ = 1, ܶതതതതത) . This 
information reduction algorithm allows the identification of similarities between attractors 
reconstructed from different time series from the geometrical point of view. The variation of 
optimal time lags reconstructed for a pair of time series is used for the quantification of the 
generalized geometrical synchronization between those time series.  

(3) Calculate the vector of absolute differences between obtained optimal time lags for each 
observation window: ߬∗௝(௑,௒) = 	 ห߬∗௝(௑) − ߬∗௝(௒)ห	(݆ = 1, ܶതതതതത). The differences between the optimal time 
lags are used as the metric of geometrical similarity between the analyzed time series. 

(4) In order to identify the slow dynamics reflecting averaged changes in absolute differences 
between optimal time lags for each data signal, divide the vector of absolute differences into ܨ = ௛்  segments: ቂ߬∗(௛∙(௜ିଵ)ାଵ)(௑,௒) , … , ߬∗(௛∙௜)(௑,௒) ቃ (݅ = 1, (തതതതതܨ . The number of points ℎ  in each segment 
should be large enough to produce a meaningful averaging.  

(5) Calculate the mean absolute difference ߬̅௜(௑,௒) = ଵ௛ ∑ ߬∗(௛∙(௜ିଵ)ା௝)(௑,௒)௛௝ୀଵ 	(݅ = 1, (തതതതതܨ  between optimal 
time lags for each segment. The obtained vector of mean absolute differences ܣ(௑,௒) =ൣ߬ଵ̅(௑,௒)߬ଶ̅(௑,௒)	 … 			߬ி̅(௑,௒)൧  is defined as a measure representing the geometrical synchronization 
between data signals ܺ, ܻ.  

2.5.4. Computational Validation of the Geometrical Synchronization Algorithm  

To validate the analysis method, we used a system of two nonlinear pendulum models with 
harmonic excitation (given in Equation (4)) coupled with diffusive terms: ݔᇱᇱ + ᇱݔ + sin(ݔ) = ܾଵ cos(߱ݐ) + ݕ)ߝ − ᇱᇱݕ ;(ݔ + ᇱݕ + sin(ݕ) = ܾଶ cos(߱ݐ) + ݔ)ߝ −  (5) ,(ݕ

where ߱ = ଶଷ ; ܾଵ = 2.048; ܾଶ = 2.049 . The coupling parameter ߝ ≥ 0  determines the coupling 
strength: low values of ߝ correspond to low synchronization between the pendulum models, while 
high values lead to highly synchronized oscillations [36]. 

Two time series ܺ = ( ଵܺ, … , ܺ௡), ܻ = ( ଵܻ, … , ௡ܻ) of size ݊ = 48,000 are illustrated in Figure 8. 
Time series ܺ  and ܻ  are constructed as follows: firstly, ߝ  is set to zero and the equations are 
integrated until transient processes die down. Then, the first 12,000 data points are sampled (first 
quarter of Figure 8). After sampling, ߝ is set to 0.03 (weak diffusive coupling) and another 12,000 
data points are sampled (second quarter of Figure 8). The process is repeated two more times for ߝ = 0.1 
in the third quarter, and ߝ = 0 in the last quarter, which are shown in Figure 8. 
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Figure 8. Time series ܺ  (a) and ܻ  (b) and the difference ܺ − ܻ  (c), obtained from numerical 
integration of the coupled nonlinear pendulum model (Equation (5)). Dotted lines separate time 
intervals with different values for the coupling parameters. 

The time series are divided into ܶ = 160 segments of size ݉ = 300 according to the first step 
of Algorithm C (300 is a sufficient number of points to reconstruct a meaningful attractor). Next, the 
optimal time lags for each segment of both signals were computed using Algorithm B. The set of 
optimal time lags ߬∗௝(௑), ߬∗௝(௒)	(݆ = 1,160തതതതതതത) is presented in Figure 9a,b. 

Now, absolute differences between optimal time lag vectors ߬∗௝(௑,௒) = 	 ห߬∗௝(௑) − ߬∗௝(௒)ห	(݆ = 1,160തതതതതതത) 
were computed. The obtained vector is divided into ܨ = 16 segments of size ℎ = 10, which results 
in the vector of mean absolute differences ܣ(௑,௒) = ൣ߬ଵ̅(௑,௒)߬ଶ̅(௑,௒)	 … 			߬ଵ̅଺(௑,௒)൧ illustrated in Figure 9c. 
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Figure 9. The sets of optimal time lags (a) ߬∗௝(௑) and (b) ߬∗௝(௒) for the time series depicted in Figure 8. 
Circles in (c) denote the absolute differences ߬∗௝(௑,௒) between optimal time lags for ܺ and ܻ. The solid 

red line in (c) corresponds to the averaged absolute differences ܣ(௑,௒) = ቂ߬ଵ̅(௑,௒)߬ଶ̅(௑,௒)	 … 			߬ଵ̅଺(௑,௒)ቃ. 
This procedure allows us to identify and quantify the variable of geometrical synchronization in 

time. The numerical values on the y-axis in Figure 9 can be interpreted as follows. Smaller values of ߬̅௜(௑,௒) indicate a greater magnitude of synchronization in the respective segment. If ߬̅௜(௑,௒) is equal to 0, the corresponding synchronization can be considered as absolute synchronization. Analogously, 
the maximal possible value of ߬௜̅(௑,௒)  (equal to 49 in this Example) corresponds to absolute 
desynchronization. For the algorithm parameters used in this example, the cut point for 
desynchronization is ߬௜̅(௑,௒) = 15 ; i.e., the signals are considered poorly synchronized in the 
respective segment for the averaged absolute differences of optimal time lags exceeding this value.  

The chaotic oscillators given in Equation (5) are nonsynchronized in the first quarter of data 
points (ߝ = 0), which results in an average absolute of differences of optimal time lags ranging from 
6 to 21. When the coupling parameter is set to ߝ = 0.03 , the chaotic oscillators are weakly 
synchronized, which is reflected by the decreased values of ܣ(௑,௒). Note that this effect is not obvious, 
and cannot be observed by simply considering the difference ܺ − ܻ (Figure 8c). Further, the coupling 
parameter ߝ = 0.1 results in an almost complete synchronization, as seen from both Figure 8c and 
the near-zero values of ܣ(௑,௒) in Figure 9c. In the last quarter of data points, oscillators are allowed 
to evolve in the uncoupled regime at ߝ = 0, which results in uncoupled chaotic oscillations. 
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2.6. Clusterization of Multivariate Time Series Based and Their Synchronization with a Master Time Series 

Suppose a set of time series ܺ(௞) = ( ଵܺ(௞), … , ܺ௡(௞)), ݇ = 1, തതതതതܭ  and a master time series ܯ …,ଵܯ)=  ௡) are given. The objective of the following procedure is to compare and clusterize timeܯ,
series ܺ(௞)	(݇ = 1,  The steps .ܯ തതതതത) based on their synchronization in respect to the master time seriesܭ
of Algorithm D read: 

(1) Compute the vector of mean absolute differences ܣ(௑(ೖ),ெ) = [߬ଵ̅൫௑(ೖ),ெ൯ … ߬̅ி൫௑(ೖ),ெ൯], describing the 
relationship between ܺ(௞) and ܯ as described in Algorithm C, for each ܺ(௞), ݇ = 1,  .തതതതതܭ

(2) Calculate the Euclidean distance (the measure used to estimate the geometrical similarity of two 
data vectors) which represents the similarity between all ܭ data signals, using the following 
formula:  ቛܣ(௑(೔),ெ) − ቛଶ(௑(ೕ),ெ)ܣ = 	ටቀ߬ଵ̅൫௑(೔),ெ൯ − ߬ଵ̅൫௑(ೕ),ெ൯ቁଶ + ⋯+ ቀ߬ி̅൫௑(೔),ெ൯ − ߬ி̅൫௑(ೕ),ெ൯ቁଶ 	,	݅, ݆ = 1,  .തതതതതܭ
The above equation yields the symmetric matrix of Euclidean distances. 

(3) Construct a dendrogram plot (UPGMA) [37] using the obtained matrix. The main goal of the 
dendrogram is to identify the clusters of similar time series, i.e., the clustering process involves 
grouping the analyzed time series based on the similarity of the slower rhythm dynamics of their 
synchronization with master time series ܯ. 

The procedure described above was utilized in subsequent analysis to identify the clusterization 
of a group of 20 people based on the synchronization of their HRV with the fluctuations in the Earth’s 
local magnetic field. These fluctuations are reflected by the power of the local magnetic field data.  

3. Results 

3.1. The Application of the New Analysis Technique on HRV and Magnetic Field Data  

3.1.1. Obtaining the Power of Local Magnetic Field during the Experiment 

The local magnetic field power data was computed using the magnetic field intensity values (see 
Algorithm A) during the experiment (see Section 2.3.1). It is also important to note one specific 
feature of the acquisition process of the magnetometer data. The magnetometer values are uploaded 
to the central server at the end of each hour, and the time required for the upload is about one minute. 
Therefore, the magnetometer data contains one minute-long periods of missing data that occur at the 
end of each hour.  

The local magnetic field power was calculated in the frequency range ߱ ∈ [0; 1]	Hz, since the 
low-frequency fluctuations of the magnetic field have the most significant impact on human 
physiology, especially heart and brain activity [29]. 

The normal heart rate for healthy adults is approximately 60 beats per minute, which implies 
that the standard IBI is approximately one second. Thus, the power of the magnetic field was 
computed in one-second intervals, in order to match the time scales of HRV and the local magnetic 
field variability. 

During the computation of the magnetic field power, the spectrogram was cropped using the 
cropping level ܵ௖௥௢௣ = 0.25, since empirical observations indicated that this cropping level was most 
effective at removing the spike type noise from the spectrograms.   

3.1.2. Identification of Clusters in the Groups Based on the Similarity/Synchronization between 
Participants‘ HRV and Magnetic Field Activity 

Algorithm D was applied to the experimental data (Sections 2.1 and 3.1.1) in order to identify 
clusters of participants based on the slow dynamics of the synchronization between the participants’ 
HRV and the power of the local magnetic field.  

According to Algorithm D, the time series ܺ(௞), ݇ = 1,20തതതതതത represents the participants’ HRV data 
collected during the experiment. The master time series ܯ corresponds to the time series of the 
power of the local magnetic field measured during the time of the experiment.  
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Since Algorithm D employs Algorithms B and C, the corresponding parameters for both of 
those algorithms had to be selected: 

(1) One of the steps of Algorithm C is splitting the participants’ HRV and local magnetic field power 
time series into segments. The standard length of analysis for HRV is five minutes [38]. Thus, inter-
beat (RR) interval and magnetometer data was split into five-minute segments for analysis. Note 
that since HRV data consists of time intervals between each pair of heartbeats, the number of 
samples in the data vectors corresponding to each five-minute segment varies due to changes in 
the participants heart rate and other factors that influence HRV, such as stress and emotional 
states [39]. Since the power of the local magnetic field was computed for one-second time 
intervals, the resulting five-minute segments consisted of the same number of elements (300 data 
points). However, the difference in the size of the segments of HRV and the power of the local 
magnetic field time series did not impact the overall result of the study, since all of the segments 
represented the same concurrent five-minute time intervals.  

(2) We selected the number of slices in Algorithm B to be 60 because it was empirically observed 
that a higher number would result in some empty slices. 

(3) The maximal value of ߬ in Algorithm B was set to 50. Higher values of ߬ would generate too 
short trajectory matrices, because the five-minute segments consisted of approximately 300 
elements. 

(4) The value of the parameter ℎ in Algorithm C, used for identification of slow dynamics of the 
synchronization between the two time series, was set to 48. This corresponded to a four-hour 
averaging of the difference of the optimal time lags. It was observed that this value of ℎ 
produced the most meaningful averaging.  

(5) As noted in Section 3.2 the magnetometer data contained one minute-long periods of missing 
data at the end of each hour. Since these periods in the time series did not contain any 
information, it was necessary to remove those periods in such a way that would not disrupt the 
timing between the HRV and magnetic field time series. The solution we implemented was to 
remove the missing data segments from both the five-minute magnetometer data and from the 
five-minute RR interval series. Since the cropped series obtained after this procedure fully 
defined the five-minute series, they were used in the data reduction step. 

We applied the clusterization technique on two-day and two-week data sets collected during 
the experiment (see Section 3.2) in order to determine how the time span of the data set impacts the 
quality of the clusterization. 

We firstly analyzed two days of data (2015/02/27 18:05:00 through 2015/03/01 18:05:00). 
Therefore, each individual’s HRV and the magnetometer data consisted of 576 five-minute segments, 
i.e.	ܶ = 576.  

According to the first step of Algorithm D, the vector of mean absolute differences ܣ(௑(ೖ),ெ) was 
computed as described in Algorithm C, for each ܺ(௞), ݇ = 1,20തതതതതത . The execution of this step is 
demonstrated in Figure 10.  
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Figure 10. The scheme of the application of Algorithm C on the experimental data. The horizontal 
axis of the depicted data corresponds to the indices of the time series. 

The application of steps 2 and 3 of Algorithm D to the two-day (2015/02/27 18:05:00 through 
2015/03/01 18:05:00) data resulted in the dendrogram plot depicted in Figure 11.  

  
Figure 11. Dendrogram plot for the two-day (2015/02/27 18:05:00 through 2015/03/01 18:05:00) data. 
Numbers on the X axis represent participants (numbered from 1 to 20). 
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The dendrogram depicted in the Figure 11 is a visual representation of the geometrical 
synchronization between HRV and the magnetic field for all 20 participants. Numbers on the X axis 
represent participants. The height of the branches of the dendrogram is proportional to the Euclidean 
distance between HRV/Magnetic field synchronization vectors for corresponding participants. 

It can be seen in Figure 11 that participants 7 and 20 are the closest (or most similar) in the sense 
of synchronization between their HRV and local magnetic field power time series. The Euclidean 
distance between the HRV and magnetic field synchronization for the pair of participants (7,20) is 
equal to 5.15. At the opposite end of the spectrum, the participant 15’s synchronization with the 
magnetic field is least similar to any of the remaining participants. 

The variation of the slow dynamics of the synchronization (Algorithm C) for two pairs of 
participants, (7,20) and (7,15), is also illustrated in Figures 12 and 13, respectively. It can be seen that 
there is a strong visible similarity between the synchronization dynamics for participants 7 and 20, 
meaning that they are similarly synchronized with the local magnetic field, and form a cluster in the 
dendrogram (Figure 11). On the other hand, there is no visible similarity in the synchronization 
dynamics of individuals (7,15), indicating that the relationship between HRV and magnetic field 
activity for those participants is unlikely (Figure 13). The Euclidean distance between the HRV and 
magnetic field synchronization for the pair of participants (7,15) is equal to 30.09. 

  
Figure 12. The variation of the slow dynamics of the geometrical synchronization constructed from 
optimal time lags for participant 7 (red line) and participant 20 (blue line) for the time period between 
2015/02/27 18:05:00–2015/03/01 18:05:00. 
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Figure 13. The variation of the slow dynamics of the geometrical synchronization constructed from 
optimal time lags for participant 7 (red line) and participant 15 (blue line) for the time period between 
2015/02/27 18:05:00–2015/03/01 18:05:00. 

Next, the dendrogram plot (Figure 14) for the entire two weeks (ܶ = 4032) of the experiment 
was obtained in an identical manner. The comparison of the two-day (Figure 11) and two-week 
(Figure 14) clusterization results shows that the use of the data with the longer time span provides 
better quality of clusterization, since the distances between the identified clusters for two-week data 
(Figure 14) are greater. 
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Figure 14. Dendrogram plot for the two-week data. Numbers on the X axis represent participants 
(numbered from 1 to 20). 

3.2. The Relation between Synchnorization Results and the Psychological Interactions between Participants 

3.2.1. Psychological Survey Data 

In addition to the HRV data presented in Section 2.1, each person’s physical and mental 
condition as well as the quality of interactions between the individuals during the two-week 
experiment were assessed. Each participant completed a questionnaire twice each day throughout 
the two-week period. The questionnaire consisted of questions concerning their physical, emotional, 
social, and general states (rating scale between 0 and 10). At the end of each day, each participant was 
also asked to make a list of other participating individuals who they had interacted with that day (if any) 
and rate whether the interaction had positively (+1) or negatively (−1) affected them and their survey 
responses. The quality of interaction data is shown in Table 1. The first column as well as the first 
row of the table show the participant number for each of the 20 volunteers. The numbers in the 
intersection rows and columns equal the sum of the row person ratings of the interaction with the 
column person ratings over the 14 days. If, for example, the row person specified four positive and 
two negative interactions with the column person during the two-week experiment, the overall 
interaction value will equal 2. It can be seen that the matrix is nonsymmetric, which means that if the 
column person positively or negatively affected the row person, this does not necessarily imply that 
the opposite is true. The matrix is also sparse, since participants did not complete this part of the 
survey if interactions did not occur.  

Table 1. Interpersonal interaction data, gathered from all questionnaires. 

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1   −1 −1      2  2     1   −1 
2          1      2     
3                     
4   −1        4          
5                     
6                     
7                    3 
8                     
9   2  1             6   
10  4    1 1     1   4     1 
11    1                 
12 2  1   1             −1  
13  1 4 2       8     1    3 
14   2                  
15                 2    
16  2                   
17                     
18                     
19 1 1 2   1 2  1  1 2 1   1  1   
20   1 1   3    1          

In order to illustrate interaction data, the questionnaire matrix was visualized using the directed 
weighted graph visualization technique (Figure 15). A line with an arrow pointing from person ܽ to 
person ܾ (the pair (ܽ, ܾ)) represents that person ܽ felt positive about person ܾ. The width of the line 
is proportional to the number of times such an interaction did occur. The graph gives a clearer picture 
of “mutual affection” between the participants. Participants’ pairs (7,20); (2,16); (4,11); (2,10); (1,12) 
can be clearly identified. However, it is important to note that the “mutual affection” for pairs (4,11) 
and (2,10) was not “balanced”, since the thickness of lines (4,11) and (11,4) as well as lines between 
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(2,10) and (10,2) is substantially different. Consequently, only the pairs (7,20), (2,16), and (1,12) show 
bilateral “mutual positive interactions”. 

 

Figure 15. The graph of the evaluated interaction levels between participants. Nodes represent 
participants (numbered from 1 to 20). A line with an arrow pointing from person ܽ  to ܾ (ܽ, ܾ), 
represents that person ܽ feels positive about person ܾ. The width of the line is proportional to the 
overall (ܽ, ܾ) interaction value (sum of ܽ’s ratings of the interaction with the ܾ’s ratings over the 14 
days). 

The data from the questionnaires (physical, emotional, social, and general state), was also 
analyzed and examined for the occurrences of changes in participants’ conditions in each domain. 
Changes were most clearly evident in participant 15’s survey data. (Figure 16). The figure shows that 
after feeling good for the first two days of the experimental period, there was a change in his physical, 
emotional, social, and general condition that drastically worsened and then recovered on the eighth 
day of the experiment.  
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Figure 16. Participant 15’s change of status during self-evaluation in points (max—10, min—0; Y axis) 
over the 14 days (X axis). The green, black, red, and blue lines correspond to the self-evaluation of 
social, general, physical, and emotional states, respectively.  

3.2.2. Comparison of Survey Data and the HRV/Magnetic Field Synchronization Results 

The results of the HRV geometrical synchronization with the magnetic field data (represented 
by cluster diagrams in Section 3.1.2) were compared with the survey data (Section 3.2) in order to 
determine if the two separate data sets (sociological and physiological) revealed similar trends. 

The dendrogram in Figure 14 shows that the synchronization between HRV and local magnetic 
field power for participants 7 and 20 is mostly similar. On the other hand, the synchronization for 
participant 15 is mostly different when compared to all other participants.  

It is interesting to observe that the pair of participants (7,20) is the mostly mutually positively 
oriented pair according to the questionnaire data (Figure 15). Remarkably, participant 15 has self-
assessed his condition being the worst (out of all 20 participants) during the analyzed period of time.  

It appears that the computational technique based on the identification of slow dynamics of the 
synchronization between HRV and local magnetic field can also reflect interpersonal relationships. 
Participants reporting more positive states and interactions were more similarly synchronized with 
the magnetic field. Note that the questionnaire data was not used in the proposed algorithm, and 
served only as a tool to assess psychological relationships within the group. 

4. Discussion 

This study developed and validated a novel computational approach using near-optimal chaotic 
attractor embedding techniques for the identification of physiological synchronization among 
individual group members’ slow wave rhythms in heart rate variability and the degree of 
synchronization with changes in the local geomagnetic field. This approach allowed us to identify 
and quantify the degree of geometrical synchronization in time. This new analysis method was 
utilized to determine the degree of synchronization between locally obtained geomagnetic fields and 
to identify clusters of similar synchronization patterns in a group of 20 people whose HRV was 
continuously monitored over a two-week period as they went about their normal day-to-day lives. 

Through comparing the two-day and two-week clusterization results, it can be seen that the two-
week data provided better separation of the clusters of participants, i.e., the distances between the 
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constructed clusters are greater. This demonstrates that the longer duration of the experiment 
positively impacts the ability to identify meaningful clusters of individuals. However, the 
comparison of the two-day dendrogram with the survey data showcased that a shorter time span of 
data provides a clearer detection of the changes in the participants’ condition. This is because the 
changes in the participant’s condition can average out over a long period of time. Thus, such 
investigations should be performed over both short and long time periods in order to obtain more 
complete results.  

To the best of our knowledge, this is the first study to incorporate psychological data gathered 
throughout the experiment in the context of physiological synchronization to other group members 
and with the Earth’s time-varying magnetic fields.  

Interestingly, the synchronization between the groups’ slow wave dynamics of RR intervals and 
the variation of the local magnetic field were consistent with the psychological data gathered 
throughout the experiment. When individual pairs reported more stress in their interpersonal 
relationships, they were less synchronized. This could imply that both the physiological and 
psychological variables were influenced by the time-varying magnetic fields in the environment. On 
the other hand, it may indicate that one’s level of stress and emotional state modulates the capacity 
to synchronize to other group members and the Earth’s magnetic field. Either way, this finding 
suggests that psychological states may be a factor in mediating the level of physiological 
synchronization between people and with the rhythms in the Earth’s magnetic field. 

Although the specific details for how geomagnetic fields influence human psychophysiology are 
not yet fully understood, a potential explanation is through a resonant coupling between the nervous 
system and filed line resonances (Alfvén waves), or standing waves in the Earth-ionosphere resonant 
cavity (Schumann resonances) that overlap with physiological rhythms [30]. However, a growing 
body of research strongly suggests that solar and magnetic influences affect a wide range of human 
health and behavioral processes with the cardiovascular and nervous systems being the most clearly 
affected. 

Overall, the study demonstrated that the slow wave rhythms in heart rate variability can 
synchronize with local magnetic field data, and that the degree of synchronization is affected by the 
quality of interpersonal relationships. When two or more persons respond to some changing 
environmental factor in a similar way and are emotionally close as measured by an independent 
metric (such as the survey or a direct comparison of their HRV attractors over time), then their 
response patterns to the environmental factor are less likely to result from chance.   

5. Conclusions 

The results of this study are consistent with other studies showing that daily autonomic nervous 
system activity responds to changes in geomagnetic activity. It also confirms these findings in a larger 
group and by using a different analysis approach; i.e., the observation of slow wave dynamics 
occurring in people’s heart rhythms over many hours to days. In addition, it also confirms the 
surprising degree of synchronized activity between the slow wave dynamics in heart rhythms and 
changes in the Earth’s time-varying magnetic field in a frequency range that includes both Schumann 
resonances and geomagnetic field line resonances, which have similar frequencies as the rhythms 
produced by human brains and hearts. 
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